Multi-Target Forecasting using Conditional Mean Embedding

FRE Lab Seminar (2024-08-01)

Giyeong Lee

Table of Contents

- 1. Introduction
- 2. Methodology
- 3. Conclusion

Motivation

- Measures in Finance
 - Statistics for asset returns
 - Performance measures
 - Risk measures
 - ...
- Q. Is there no <u>unified framework</u> to forecast various financial measures?
 - Lots of financial measures admit the following form:

 $\mathbb{E}(f(Y)|X=x)$

where x is a past observation of covariates X and Y is a target variable

• Might be possible if we know the distribution Y|X = x and a function f is given as an input

1. Introduction

Kernel Mean Embedding

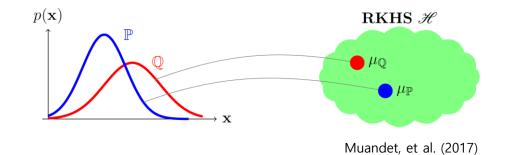
- Maximum Mean Discrepancy (MMD)
 - Measures difference between two distributions P, Q using a class of some functions \mathcal{F}

$$\mathsf{MMD}(P,Q;\mathcal{F}) = \sup_{f \in \mathcal{F}} \left(\mathbb{E}_{X \sim P} f(X) - \mathbb{E}_{Y \sim Q} f(Y) \right)$$

Kernel Mean Embedding (KME)

- Embeds probability distributions into reproducing kernel Hilbert spaces
- Requires more relaxed conditions than likelihood-based models
- Gretton, et al. (2012) proved MMD can be evaluated efficiently using KME
 - For some RKHS \mathcal{H} (which depends on \mathcal{F}),

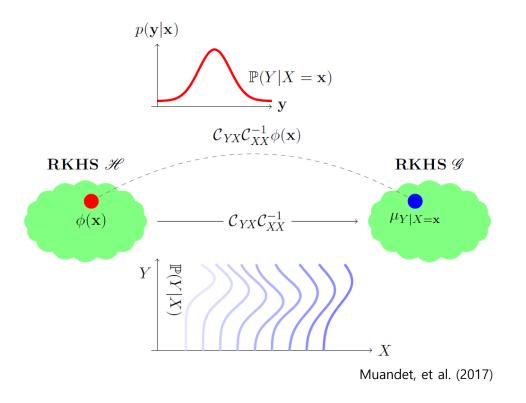
$$MMD(P,Q;\mathcal{F})^{2} = \left\|\mu_{P} - \mu_{Q}\right\|_{\mathcal{H}}^{2}$$



1. Introduction

Conditional Mean Embedding

- Conditional Mean Embedding (CME)
 - Embeds conditional distributions into RKHSs
 - Enables us to evaluate conditional expectations via the inner product
- Definition
 - CME $\mu_{Y|X=x}$ of P(Y|X=x) is the element of an RKHS such that
 - *1.* $\mu_{Y|X=x} = \mathbb{E}(\psi(Y)|X=x)$ (ψ : canonical feature map of \mathcal{G})
 - 2. $\mathbb{E}(f(Y)|X = x) = \langle f, \mu_{Y|X=x} \rangle_{\mathcal{G}}$ for all $f \in \mathcal{G}$
 - Denote as $\mu_{Y|x} = \mu_{Y|X=x}$ briefly



Reproducing Kernel Hilbert Space

Hilbert Space

• An inner product space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ such that \mathcal{H} is complete with respect to the norm $||f|| = \langle f, f \rangle$

Reproducing Kernel Hilbert Space(RKHS)

- A Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ of functions on \mathcal{X} such that
 - 1. $k(x,\cdot) \in \mathcal{H}$ for all $x \in \mathcal{X}$
 - 2. $f(x) = \langle f, k(x, \cdot) \rangle$ for all $x \in \mathcal{X}, f \in \mathcal{H}$
- The second condition is called the **reproducing property**
- The map $\phi: x \in \mathcal{X} \mapsto k(x, \cdot) \in \mathcal{H}$ is called the canonical feature map of \mathcal{H}

Empirical Estimator of CMEs

Song, Fukumizu, Gretton. (2013)

$$\hat{\mu}_{Y|x} = \sum_{\ell=1}^{N} w_{\ell}(x)\psi(y_{\ell}) \quad \text{where} \quad \begin{pmatrix} w_1(x) \\ \vdots \\ w_N(x) \end{pmatrix} = \left(\left(k(x_i, x_j) \right)_{1 \le i, j \le N} + \lambda I \right)^{-1} \begin{pmatrix} k(x, x_1) \\ \vdots \\ k(x, x_N) \end{pmatrix}$$

- Evaluation of conditional expectations
 - Reproducing property gives

$$\widehat{\mathbb{E}}(f(Y)|X=x) = \langle f, \hat{\mu}_{Y|x} \rangle_{\mathcal{G}} = \sum_{\ell=1}^{N} w_{\ell}(x) f(y_{\ell})$$

- Requires a matrix inversion
 - Not scalable to large datasets

Estimator of CMEs – Neural Network Approach

- Grünewälder, et al. (2012)
 - Provides an interpretation in the view of function-valued regression

$$\underset{C:\mathcal{H}\to\mathcal{G}}{\operatorname{argmin}} \frac{1}{N} \sum_{\ell=1}^{N} \|\psi(y_i) - C\phi(x_i)\|_{\mathcal{G}}^2 + \lambda \|C\|_{\mathrm{HS}}^2$$

- Simizu, Fukumizu, Sejdinovic. (2024)
 - Suggests the NN-based estimator of CMEs based on the above interpretation
 - $w_a(\cdot; \theta)$: weight map implemented by neural networks
 - η_a : fixed or learnable location parameter

$$\hat{\mu}_{Y|x} = \sum_{a=1}^{M} w_a(x;\theta)\psi(\eta_a)$$

Simple Experiment & Comparison

- Data: 10 Currencies (EUR, GBP, AUD, NZD, CAD, CHF, SGD, KRW, JPY, CNY)
 - Train: 2014~2020, Validation: 2021~2022
 - Input: log return of adj. close (daily, 60 days)
 - Horizon *T*: 20 days

Metrics

• MSE = $\frac{1}{DT}\sum_{i,t}(\hat{r}_{it} - r_{it})^2$

• RV =
$$\frac{1}{D}\sum_i \sqrt{r_{i1}^2 + \dots + r_{iT}^2}$$

• ...

		GRU + Point Prediction (MSE)	GRU + CME
#parameters		10,648,264	100,689
MSE	(r_1, \cdots, r_T)	6.22×10^{-3}	6.15×10^{-3}
MAE	$\operatorname{std}(r_1,\cdots,r_T)$	$4.43 \times 10^{-3} (1.35 \times 10^{-3})$	1.03×10^{-3}
	$\max(r_1, \cdots, r_T)$	$8.80 \times 10^{-3} (3.56 \times 10^{-3})$	3.01×10^{-3}
	$\min(r_1, \cdots, r_T)$	$8.36 \times 10^{-3} (3.31 \times 10^{-3})$	2.72×10^{-3}
	$MDD(r_1, \cdots, r_T)$	$1.54 \times 10^{-2} (1.09 \times 10^{-2})$	1.01×10^{-2}
	$\mathrm{RV}(r_1,\cdots,r_T)$	$1.90 \times 10^{-2} (6.04 \times 10^{-3})$	4.53×10^{-3}

Future Work

Choice of kernel

- What kernel is most suitable for time-series data?
 - Signature kernel
- What class of functions can be represented using CMEs with this kernel?
- Error correction for each *f*

Computation cost during training

- *M* locational parameters \rightarrow Computation cost increases quadratically
- Might be solved with gradient accumulation (guess)

More benchmarks

• SOTA for each metric

References

[1] Gretton, Arthur, et al. "A kernel two-sample test." *The Journal of Machine Learning Research* 13.1 (2012): 723-773.

[2] Grünewälder, Steffen, et al. "Conditional mean embeddings as regressors-supplementary." *arXiv preprint arXiv*:1205.4656 (2012).

[3] Muandet, Krikamol, et al. "Kernel mean embedding of distributions: A review and beyond." *Foundations and Trends® in Machine Learning* 10.1–2 (2017): 1–141.

[4] Shimizu, Eiki, Kenji Fukumizu, and Dino Sejdinovic. "Neural-Kernel Conditional Mean Embeddings." *arXiv preprint arXiv*:2403.10859 (2024).

[5] Song, Le, Kenji Fukumizu, and Arthur Gretton. "Kernel embeddings of conditional distributions: A unified kernel framework for nonparametric inference in graphical models." *IEEE Signal Processing Magazine* 30.4 (2013): 98–111.