[논문 리뷰] Distribution-Free Multivariate Density Forecast

Jungyoon Song

Financial Risk Engineering Lab Department of Industrial Engineering Seoul National University

DEC 16, 2024

1. DAN-NFN [1] 2. JDAN-NFN [2]

DAN-NFN

Problem Description of Density Forecast

- A positive-weighted ANN, named distribution approximation network (DAN)
- The other ANN, named network forecast network (NFN), is built as the forecaster of DAN
- DAN-NFN is trained through maximum likelihood estimation (MLE)

$$f(y_{t+k}|X_t) = \begin{cases} w_0 \cdot \delta(y_{t+k}), & y_{t+k} = 0 \\ \bar{f}(y_{t+k}), & y_{t+k} \in (0, 1) \\ w_1 \cdot \delta(y_{t+k} - 1), & y_{t+k} = 1 \end{cases} \quad \Lambda = \begin{cases} \Psi|_{X_t} \text{ with} \\ \text{PDF } f(\cdot|X_t) \\ \int_0^1 \bar{f}(y) \, dy = 1 - w_0 - w_1. \end{cases} \quad (3)$$

$$f(y) = \{w_0, & y_{t+k} = 0 \\ w_0 + \bar{F}(y_{t+k}), & y_{t+k} \in (0, 1) \\ 1, & y_{t+k} = 1 \end{cases} \quad (2)$$

$$A = \begin{cases} \Psi|_{X_t} \text{ with} \\ \text{PDF } f(\cdot|X_t) \\ \int_0^1 \bar{f}(y) \, dy = 1 - w_0 - w_1. \end{cases} \quad (3)$$

$$y = s\{w_{H+1} \cdots s[w_2 \cdot s(w_1 \cdot \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2] \cdots + \mathbf{b}_{H+1}\}$$

$$(10)$$

$$(10)$$

$$(11)$$

$$W|_{X_t} \text{ with} \\ \text{PDF } f(\cdot|X_t) \\ \int_0^{w_0} \bar{F}(y) = 0, \\ \lim_{y \to 0} \bar{F}(y) = 1 - w_0 - w_1, \\ \lim_{y \to 1} \bar{F}(y) = 1 - w_0 - w_1, \\ \bar{F}(\cdot) \text{ is monotone nondecreasing} \\ \inf_{y \to 1} \bar{F}(\cdot) \text{ is monotone nondecreasing} \\ \inf_{y \to 1} \bar{F}(\cdot) \text{ is monotone nondecreasing} \\ \inf_{y \to 1} \bar{F}(\cdot) \text{ is monotone nondecreasing} \\ (4)$$

Framework of DAN-NFN

□ NFN 에서 DAN의 *W*⁺, *B*, *n*₀, *n*₁ 출력, DAN에서 입력 받은 weight를 이용하여 monotone non-decreasing CDF로 활용

$$\bar{\Gamma}_D(y; \mathbf{W}^+, \mathbf{B}) = \frac{\Gamma_D(y; \mathbf{W}^+, \mathbf{B}) - \Gamma_D(L_y; \mathbf{W}^+, \mathbf{B})}{\Gamma_D(U_y; \mathbf{W}^+, \mathbf{B}) - \Gamma_D(L_y; \mathbf{W}^+, \mathbf{B})} \quad (16)$$

Framework of DAN-NFN

□ CDF를 PDF로 변환 가능하고, 이를 MLE기반 NLL을 통해 최적화

 $\square \quad NLL = \sum^{T} -ln\hat{f}(y_{t+k}|X_t)$

$$\widehat{f}(y_{t+k}|X_t) = \begin{cases} n_0 \cdot n_1 \cdot \delta(y_{t+k}), & y_{t+k} = 0\\ (1-n_0)\overline{\Gamma}'_D(y_{t+k}; \mathbf{W}^+, \mathbf{B}), y_{t+k} \in (0, 1)\\ n_0 \cdot (1-n_1) \cdot \delta(y_{t+k} - 1), & y_{t+k} = 1 \end{cases}$$

$$\begin{aligned} y_{t+k}^* & \text{Loss from } \{X_t, y_{t+k}^*\} \text{ and optimizer} \\ \text{If } y_{t+k}^* = 0, loss_t = -\ln(\widehat{w}_0) = -\ln(n_0 \cdot n_1), \\ \hline \nabla_{\theta_N} loss_t = \frac{\partial [-\ln(n_0 \cdot n_1)]}{\partial n_0} \cdot \nabla_{\theta_N} n_0 + \frac{\partial [-\ln(n_0 \cdot n_1)]}{\partial n_1} \cdot \nabla_{\theta_N} n_1 \\ \text{If } y_{t+k}^* \in (0,1), loss_t = -\ln[\widehat{f}(y_{t+k}^*|X_t)] = -\ln[(1-n_0) \cdot \overline{\Gamma}'_D(y_{t+k}^*; \mathbf{W}^+, \mathbf{B})], \\ \hline \nabla_{\theta_N} loss_t = \left[\nabla_{\mathbf{W}^+} \{ -\ln[(1-n_0) \cdot \overline{\Gamma}'_D(y_{t+k}^*; \mathbf{W}^+, \mathbf{B})] \} \right]^T \cdot \nabla_{\theta_N} \mathbf{W}^+ + \\ & \left[\nabla_{\mathbf{B}} \{ -\ln[(1-n_0) \cdot \overline{\Gamma}'_D(y_{t+k}^*; \mathbf{W}^+, \mathbf{B})] \} \right]^T \cdot \nabla_{\theta_N} \mathbf{B} + \\ & \frac{\partial \{ -\ln[(1-n_0) \cdot \overline{\Gamma}'_D(y_{t+k}^*; \mathbf{W}^+, \mathbf{B})] \}}{\partial n_0} \cdot \nabla_{\theta_N} n_0 \\ \text{If } y_{t+k}^* = 1, loss_t = -\ln(\widehat{w}_1) = -\ln[n_0 \cdot (1-n_1)], \\ \hline \nabla_{\theta_N} loss_t = \frac{\partial \{ -\ln[n_0 \cdot (1-n_1)] \}}{\partial n_0} \cdot \nabla_{\theta_N} n_0 + \frac{\partial \{ -\ln[n_0 \cdot (1-n_1)] \}}{\partial n_1} \cdot \nabla_{\theta_N} n_1 \end{aligned}$$

Architecture of DAN-NFN

X

Shorted

layers

(a)

- □ Time series를 다를 수 있도록 LSTM Layer 사용
- Gradient diffusion을 방지하기 위한 residual architecture

 $\mathbf{c}_{\tau-1} \longrightarrow \oplus$

 \mathbf{h}_{τ}

Fig. 2. Residual architecture and LSTM. (a) Structure of the residual network. (b) Information flow in LSTM. (c) LSTM layer.

(b)

tanh

h_r

h_r

 \mathbf{c}_{τ} [$\mathbf{x}_{t-d+1},\ldots,\mathbf{x}_{t}$]

LSTM

layer, M

 $[\mathbf{h}_{t-d+1},\ldots,\mathbf{h}_t]$

(c)

Fig. 3. Structures of NFN and DAN. (a) NFN. (b) DAN.

Problem Description of Multivariate Density Forecast

- A joint distribution approximation network (JDAN) is a generic framework for approximating real continuous joint CDFs through a deep NN
- NFN outputs all parameters of JDAN

.

JDAN-NFN is trained through maximum likelihood estimation (MLE)

Let $y_{t+\tau}$ be a *D*-dimensional random vector, then $f(\cdot)$ should satisfy the following conditions:

$$\begin{cases} f(\cdot) \text{ is nonnegative and bounded,} \\ \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f(\boldsymbol{y}) dy^1 \cdots dy^D = 1. \end{cases}$$
(1)
For $F(\cdot)$, it can be written as
$$F(\boldsymbol{y}_{t+\tau}) = \int_{-\infty}^{y_{t+\tau}^1} \cdots \int_{-\infty}^{y_{t+\tau}^D} f(\boldsymbol{y}) dy^1 \cdots dy^D.$$
(2)
$$\begin{cases} (i) \ F(\cdot) \text{ is continuously differentiable,} \\ (ii) \ \frac{\partial^D(F(\boldsymbol{y}))}{\partial y^1 \cdots \partial y^D} |_{\boldsymbol{y}=\boldsymbol{y}_{t+\tau}} \ge 0, \\ (iii) \ \lim_{\boldsymbol{y}_{t+\tau} \to +\infty} F(\boldsymbol{y}_{t+\tau}) = 1, \\ (iv) \ \lim_{\boldsymbol{y}_{t+\tau}^d \to -\infty} F(\boldsymbol{y}_{t+\tau}) = 0, \forall d \in [1, D]. \end{cases}$$
(3)

JDAN-NFN

Framework of JDAN-NFN

- □ NFN은 JDAN의 parameters인 W⁺, B, C 출력
- □ JDAN은 Tensor W⁺, B 으로 D차원의 CDFs 생성
- 각각 CDFs에 대한 correlation term을 C ((^D₂) dim)로 표현 (time-variant correlation)
- JDAN-NFN 의 Ψ 는 DAN-NFN의 Γ 와 동일한 의미

$$\Psi^{\mathcal{C}} = \frac{1}{\binom{D}{2}} \cdot \sum_{i>d}^{D} \sum_{d=1}^{D-1} [\mathbf{C}_{di} \cdot (1 - \overline{\Psi}^{d}) \cdot (1 - \overline{\Psi}^{i}) + 1], \quad (10)$$
$$\Psi_{\mathcal{J}}(\boldsymbol{y}_{t+\tau}; \mathbf{W}^{+}, \mathbf{B}, \mathbf{C}) = \Psi^{\mathcal{C}} \cdot \prod_{d=1}^{D} \overline{\Psi}^{d}. \quad (11)$$

□ Loss function $L(\boldsymbol{\theta}_N, \boldsymbol{X}_t, \boldsymbol{y}_{t+\tau}^*) = -\ln[\widehat{f}(\boldsymbol{y}_{t+\tau}^* | \boldsymbol{X}_t)],$

Constraints of JDAN-NFN

CDF of JDAN-NQF

$$\Psi^{\mathcal{C}} = \frac{1}{\binom{D}{2}} \cdot \sum_{i>d}^{D} \sum_{d=1}^{D-1} [\mathbf{C}_{di} \cdot (1 - \overline{\Psi}^{d}) \cdot (1 - \overline{\Psi}^{i}) + 1], \quad (10)$$

$$\Psi_{\mathcal{J}}(\boldsymbol{y}_{t+\tau}; \mathbf{W}^+, \mathbf{B}, \mathbf{C}) = \Psi^{\mathcal{C}} \cdot \prod_{d=1}^{D} \overline{\Psi}^d.$$
(11)

Nonnegativity of JDAN-NQF (d=2), d>2는 귀납적 증명

$$\Psi_{\mathcal{J}}^{1,2} = \overline{\Psi}^1 \cdot \overline{\Psi}^2 \cdot [\mathbf{C}_{12} \cdot (1 - \overline{\Psi}^1) \cdot (1 - \overline{\Psi}^2) + 1]. \quad (40)$$

$$\frac{\partial^2 (\boldsymbol{\Psi}_{\mathcal{J}}^{1,2})}{\partial y^1 \partial y^2} = \frac{\partial \overline{\boldsymbol{\Psi}}^1}{\partial y^1} \cdot \frac{\partial \overline{\boldsymbol{\Psi}}^2}{\partial y^2} \cdot \left[\mathbf{C}_{12} \cdot (1 - 2\overline{\boldsymbol{\Psi}}^1) \cdot (1 - 2\overline{\boldsymbol{\Psi}}^2) + 1 \right]$$
(41)

Limits of JDAN-NQF $\lim_{\boldsymbol{y}_{t+\tau} \to +\infty} \Psi_{\mathcal{J}}(\boldsymbol{y}_{t+\tau}; \mathbf{W}^{+}, \mathbf{B}, \mathbf{C})$ $= \lim_{\boldsymbol{y}_{t+\tau} \to +\infty} \Psi^{\mathcal{C}} \cdot \left(\prod_{d=1}^{D} \lim_{\boldsymbol{y}_{t+\tau}^{i} \to +\infty} \overline{\Psi}^{d}\right) = 1,$ (13) $\lim_{\boldsymbol{y}_{t+\tau}^{d} \to -\infty} \Psi_{\mathcal{J}}(\boldsymbol{y}_{t+\tau}; \mathbf{W}^{+}, \mathbf{B}, \mathbf{C}) = 0, \forall d \in [1, D].$ (14)

JDAN-NFN

Evaluation measure

Reliability
$$b_{\tau}^{\alpha_{j,d}} = \alpha_{j,d} - \frac{1}{N} \sum_{i=1}^{N} H(\hat{q}_{i+\tau|i}^{\alpha_{j,d}} - y_{i+\tau}^{d*}),$$

Sharpness

$$\delta_{\tau}^{\alpha_{j,d}} = \frac{1}{N} \sum_{i=1}^{N} (\hat{q}_{i+\tau|i}^{1-\alpha_{j,d}/2} - \hat{q}_{i+\tau|i}^{\alpha_{j,d}/2}),$$

Skill score
$$S^d_{t+\tau|t} = \sum_{j=1}^J \{ [H(\hat{q}^{\alpha_{j,d}}_{t+\tau|t} - y^{d*}_{t+\tau}) - \alpha_{j,d}] (y^{d*}_{t+\tau} - \hat{q}^{\alpha_{j,d}}_{t+\tau|t}) \},$$

Variogram score

$$VS_{t+\tau|t} = \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} (|y_{t+\tau}^{i*} - y_{t+\tau}^{j*}|^p - E_{\widehat{\Phi}}|Y_i - Y_j|^p)^2$$

$$\approx \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} (|y_{t+\tau}^{i*} - y_{t+\tau}^{j*}|^p - \frac{1}{m} \sum_{k=1}^{m} |Y_i^{(k)} - Y_j^{(k)}|^p)^2,$$

Dataset

TABLE I DETAILS OF THE THREE DATA SETS

	Case A	Case B	Case C		
Scenario	wind speed	wind power	electricity load		
Location	34°12′23.04″N, 102°44′32.64″W Texas, USA	Brown Hill Wind Farm, $P_c = 94.5$ MW Hallett Hill Wind Farm, $P_c = 71.4$ MW North Brown Hill Wind Farm, $P_c = 132.3$ MW Australia	Queensland, Australia		
Covering period	2019/12/31 to $2020/12/31$	2019/12/31 to $2020/12/31$	2009/12/31 to $2020/12/31$		
Resolution	5 minutes	5 minutes	2 hours		
$oldsymbol{X}_t$	historical wind speed series in different directions, historical temperature series, historical relative humidity series, time of the day	historical wind power series of different wind farms, time of the day	historical load series, historical electricity price series, day of the week, time of the day		
$oldsymbol{y}_{t+ au}$	speed vector of next 5 minutes	power vector of next 5 minutes	load vector of the next day		
D	2	3	12		

Results

	Case A			Case B			Case C					
	$\overline{b_{\tau}}\%$	$\overline{\delta_{\tau}}$	$\overline{S_{\tau}}$	$\overline{VS_{\tau}}$	$\overline{b_{\tau}}\%$	$\overline{\delta_{\tau}}$	$\overline{S_{\tau}}$	$\overline{VS_{\tau}}$	$\overline{b_{\tau}}\%$	$\overline{\delta_{\tau}}$	\overline{S}_{τ}	\overline{VS}_{τ}
Persistence	4.64	0.0592	-1.034	0.0529	4.78	0.0676	-1.556	0.1228	3.92	0.0885	-1.938	0.9732
VARX	2.40	0.0468	-0.860	0.0395	4.32	0.0772	-1.390	0.0827	3.67	0.1105	-1.887	0.7650
VCG-t-copula	2.89	0.0463	-0.846	0.0227	2.39	0.0683	-1.387	0.0789	3.06	0.0911	-1.884	0.6473
WKDE-R-copula	2.04	0.0483	-0.822	0.0121	2.61	0.0905	-1.370	0.0469	2.26	0.1087	-1.746	0.3407
Gaussian-E-copula	1.95	0.0350	-0.817	0.0061	2.15	0.0642	-1.338	0.0356	2.92	0.0731	-1.458	0.4145
AMISE-MKDE	1.99	0.0559	-0.833	0.0084	2.60	0.0915	-1.383	0.0454	3.26	0.1073	-1.826	0.5405
MQR	2.59	0.0413	-0.810	/	2.55	0.0627	-1.212	/	3.48	0.0705	-1.453	/
QR-E-copula	2.51	0.0339	-0.643	/	2.72	0.0596	-1.336	/	3.12	0.0706	-1.448	/
JDAN-NFN	0.79	0.0280	-0.511	0.0050	1.40	0.0521	-0.8979	0.0269	2.12	0.0787	-1.365	0.3167

TABLE III PERFORMANCE DEMONSTRATION

denotes parametric approaches; de

denotes nonparametric approaches

[1] Hu, T., Guo, Q., Li, Z., Shen, X., & Sun, H. (2019). Distribution-free probability density forecast through deep neural networks. IEEE transactions on neural networks and learning systems, 31(2), 612-625.

[2] Meng, Z., Guo, Y., Tang, W., & Sun, H. (2022). Nonparametric multivariate probability density forecast in smart grids with deep learning. IEEE Transactions on Power Systems, 38(5), 4900-4915.