On the Trend Reversal Prediction and Its Robust Modification

FRE Lab Seminar (2025-02-04)

Giyeong Lee

Daily Stock Trading Strategies

Methodology	Article	Features	Limitations
Price Prediction	Jia et al. (2024)	Hybrid model combining ResNet and LSTM achieving at least a 20% improvement	Highly sensitive to data quality and preprocessingHigh computational cost
	Phuoc et al. (2024)	LSTM model combined with technical indicators achieving 93% short-term stock price accuracy	Model training time can be lengthyDependent on data quality
Price Direction Prediction	Kim et al. (2020)	Combined ETE (Effective Transfer Entropy) and ML algorithms to improve directional prediction accuracy for S&P 500 index	Requires complex data processingVulnerable to sudden market changes
Trend Reversal Prediction (Contrarian Trading)	Tsang et al. (2017)	Combined DC (Directional Change) paradigm and classification algorithms achieving a Sharpe ratio of 1.8 in FX markets	 Complex model structure makes real-time application challenging
	Adegboye et al. (2021)	Developed trend reversal prediction model using genetic algorithms and DC framework, achieving high profitability acros s 20 currency pairs	High computational cost and challenges in integrating data sources
Momentum	Moskowitz et al. (2012)	Time-series momentum strategy achieving an annual excess return of 1.58%, validated across global asset classes	Increased risk of losses at market turning pointsPotential for reduced long-term returns

Trend Reversal Prediction

Advantages

- Exploiting market inefficiencies
- Portfolio diversification
- Reduced transaction costs

Unsolved issues

- Sensitive to the data quality and noise
- Difficult to distinguish between trend reversals and simple adjustments
- Other typical ML-related issues

Terminology Issues

- Trend … (up-)trend at time t if
 - Case 1. $r_{t-s+1} > 0$ for all $s = 1, \dots, H$ with window H
 - Case 2. Smoothing($p_{t-H+1}, \cdots, p_{t-1}$) < $(1 + \eta)p_t$ with window H and threshold η
 - Case 3. Gradient-based
- Trend reversal

...

• Once we define 'trend', the definition of 'trend reversal' is relatively clear e.g. Denoting the uptrend and downtrend as $m_t = 1, -1$, respectively, trend reversal can be defined simply as $\mathbb{I}(m_{t-1} \cdot m_t = -1)$

⇒ Main Issue: Difficulty in establishing a unified and robust definition of 'trend'

Bypassing Trend (1)

Mean-reversion

- Concrete theoretical background e.g. Ornstein–Uhlenbeck process: $dx_t = \theta(\mu - x_t)dt + \sigma dW_t$
- Gaussian assumption is necessary to utilize the theory in most case

Directional change framework

- Directional change (DC)
 - The first time at which the rate of change relative to the previous local extremum exceeds the threshold
 - Each DC event indicates a new trend
- Overshooting
 - The period from the moment that a DC event was observed to the next local extremum

Bypassing Trend (2)

- Directional change framework (Cont.)
 - During the overshooting period, it is impossible to determine when the overshooting will end
 → Predict the duration of the current overshooting phase
 - Other consideration is possible
 - Extension to the adaptive threshold to respond to changes in the magnitude of volatility
 - Predicting the probability that the next local extremum will be observed within a given period
- Econophysics perspective … *Price change pressure*
 - *Price change pressure* decomposition
 - Long-term: due to changes in the intrinsic value of the asset
 - Short-term: the pressure to recover temporary discrepancies due to investors' cognitive errors or overreactions
 - Expected to alleviate the problem of distinguishing between trend reversal and simple adjustment

Future Work

- Research direction under the DC framework
 - Adaptation to the temporal shift of input and covariate distributions
 - Probabilistic modification of DC framework
- Further literature review looking for the concrete notion of *price change pressure*
 - Performance comparison with DC framework
 - Will establish the notion and compare it to existing research if there is no suitable notion in econphysics researches

References

[1] Adegboye, A., Kampouridis, M., and Otero, F. Improving trend reversal estimation in forex markets under a directional changes paradigm with classification algorithms. *International Journal of Intelligent Systems* 36, 12 (2021), 7609 - 7640.

[2] Bakhach, A., Tsang, E. P., and Jalalian, H. Forecasting directional changes in the fx markets. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (2016), IEEE, pp. 1 - 8.

[3] Bakhach, A. M., Tsang, E. P., and Raju Chinthalapati, V. Tsfdc: A trading strategy based on forecasting directional change. *Intelligent Systems in Accounting, Finance and Management* 25, 3 (2018), 105 - 123.

[4] Chen, Y., Niu, X., and Zhang, Y. Exploring contrarian degree in the trading behavior of china' s stock market. *Complexity* 2019, 1 (2019), 1678086.

[5] Eugster, P., and Uhl, M. W. Technical analysis: Novel insights on contrarian trading. *European Financial Management* 29, 4 (2023), 1160 - 1190.

[6] Guillaume, D. M., Dacorogna, M. M., Dav ´e, R. R., M^{··}uller, U. A., Olsen, R. B., and Pictet, O. V. From the bird's eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets. *Finance and stochastics* 1 (1997), 95 - 129.

[7] Jia, Y., Anaissi, A., and Suleiman, B. Resnls: An improved model for stock price forecasting. *Computational Intelligence* 40, 1 (2024), e12608.

[8] Kim, S., Ku, S., Chang, W., and Song, J. W. Predicting the direction of us stock prices using effective transfer entropy and machine learning techniques. *IEEE Access* 8 (2020), 111660 - 111682.

[9] Lakonishok, J., Shleifer, A., and Vishny, R. W. Contrarian investment, extrapolation, and risk. *The journal of finance* 49, 5 (1994), 1541 - 1578.

[10] Moskowitz, T. J., Ooi, Y. H., and Pedersen, L. H. Time series momentum. *Journal of financial economics* 104, 2 (2012), 228 - 250.

[11] Muhammad, D., Ahmed, I., Naveed, K., and Bendechache, M. An explainable deep learning approach for stock market trend prediction. *Heliyon* 10, 21 (2024).

[12] Phuoc, T., Anh, P. T. K., Tam, P. H., and Nguyen, C. V. Applying machine learning algorithms to predict the stock price trend in the stock market - the case of vietnam. *Humanities and Social Sciences Communications* 11, 1 (2024), 1 - 18.

[13] Song, Y. Enhancing stock market trend reversal prediction using feature-enriched neural networks. *Heliyon* 10, 2 (2024).

[14] Tsang, E. P., Tao, R., Serguieva, A., and Ma, S. Profiling high-frequency equity price movements in directional changes. *Quantitative finance* 17, 2 (2017), 217 - 225.